Powered by Blogger.
🌏World roaming Software Technology Evangelist. Proud Indian, Bought up from Coimbatore, Tamilnadu, INDIA. Pointing towards share of Knowledge. 😎
  • Programming ▼
    • DotNet
      • C# Coding Standards
    • Cloud
    • Microsoft 365/ SharePoint
    • SQL
    • Angular / ReactJS / NodeJS
    • Salesforce
    • Magento
    • Python
    • Mobile App Development
    • Database
    • DevOps
    • Automation Testing
    • User Experience
  • Learning ▼
    • Roadmap
    • Trainings
    • E-Books
    • Quick References
    • Certifications
    • Self Improvement
    • Productivity
    • TED Talks
    • Kids Programming
  • Software Engineering ▼
    • Agile
    • Software Design
    • Architecture Samples
    • Best Practises
    • Technologies and Tools
    • Open Sources
    • Free Softwares
  • Leadership ▼
    • Program Management
    • Product Management
    • Project Management
    • People Management
  • Job Search ▼
    • Interview Tips
    • Career Handbook
    • Resume Templates
    • Sample Profiles
    • Cover Letter Samples
    • HR Interview Questions
    • Job Websites List
    • Coding Site Links
    • TedEx Talks
    • International Jobs
  • Emerging Topics ▼
    • Innovation
    • Machine Learning
    • Artificial Intelligence
    • Generative AI
    • AI Tools
    • Big Data
    • Data Science
    • Data Analytics & Visualization
    • Cyber Security
    • Microsoft Azure
    • Amazon Web Services
    • Cryptography
    • ChatBots
    • Internet of Things (IoT)
    • Mixed Reality /AR/VR
  • Misc. ▼
    • Travel
    • Photography
    • Health Tips
    • Medical Tips
    • Home Designs
    • Gardening
  • Favourite Links ▼
    • Saran Kitchen Hut
    • World of Akshu
    • Saran & Akshu - Other Links

 Referred Link - https://www.linkedin.com/posts/the-gen-academy_genacademy-genai-rag-activity-7374314296928899072-m3Z5

 


𝗧𝗵𝗶𝗻𝗸 𝗼𝗳 𝗥𝗔𝗚 𝗮𝘀 𝗴𝗶𝘃𝗶𝗻𝗴 𝘆𝗼𝘂𝗿 𝗔𝗜 𝗽𝗲𝗿𝗺𝗶𝘀𝘀𝗶𝗼𝗻 𝘁𝗼 “𝗼𝗽𝗲𝗻 𝗮 𝗯𝗼𝗼𝗸” 𝗯𝗲𝗳𝗼𝗿𝗲 𝗶𝘁 𝗮𝗻𝘀𝘄𝗲𝗿𝘀.

If you’ve bumped into Retrieval-Augmented Generation (RAG) and wondered what it really is (and when you actually need it), this mini-primer is for you.

𝗪𝗵𝗮𝘁 𝗥𝗔𝗚 𝗶𝘀 — 𝗶𝗻 𝗼𝗻𝗲 𝗯𝗿𝗲𝗮𝘁𝗵

RAG pairs a language model with an external knowledge source so answers are grounded in real, up-to-date information instead of just whatever the model remembers from training. That means fewer made-up facts and more verifiable responses.

𝗪𝗵𝗲𝗻 𝘆𝗼𝘂 𝘀𝗵𝗼𝘂𝗹𝗱 𝗿𝗲𝗮𝗰𝗵 𝗳𝗼𝗿 𝗥𝗔𝗚
✅You want a domain-specific assistant (HR policy bot, clinical FAQ, internal IT helper).
✅You need current info beyond a model’s training cutoff.
✅You care about citations and traceability.

𝗧𝗵𝗲 𝗽𝗶𝗽𝗲𝗹𝗶𝗻𝗲 (𝘀𝗶𝗺𝗽𝗹𝗲 𝘃𝗲𝗿𝘀𝗶𝗼𝗻)
✅𝗜𝗻𝗱𝗲𝘅𝗶𝗻𝗴 – Gather your sources (PDFs, sites, databases). Split long docs into smaller, meaningful “chunks,” turn each chunk into an embedding (a numeric vector), and store them in a vector database for fast similarity search.

✅𝗥𝗲𝘁𝗿𝗶𝗲𝘃𝗮𝗹 – Convert the user’s question into an embedding and fetch the closest chunks from the vector store.

✅𝗚𝗲𝗻𝗲𝗿𝗮𝘁𝗶𝗼𝗻 – Feed the question + retrieved chunks to the LLM to produce a grounded answer (and optionally add citations).

Why chunk? Models don’t magically use long context well; narrowing to the most relevant bits improves precision and keeps prompts lean.

𝗛𝗲𝗹𝗽𝗳𝘂𝗹 𝗮𝗱𝗱-𝗼𝗻𝘀 (𝘂𝘀𝗲 𝗮𝘀 𝗻𝗲𝗲𝗱𝗲𝗱)

✅𝗤𝘂𝗲𝗿𝘆 𝘁𝗿𝗮𝗻𝘀𝗹𝗮𝘁𝗶𝗼𝗻 (𝗛𝘆𝗗𝗘, 𝗺𝘂𝗹𝘁𝗶-𝗾𝘂𝗲𝗿𝘆): Rewrite or expand the question so retrieval finds better matches. HyDE, for instance, has the model draft a hypothetical answer, embed it, and search with that to boost recall.

✅𝗥𝗼𝘂𝘁𝗶𝗻𝗴 & 𝗰𝗼𝗻𝘀𝘁𝗿𝘂𝗰𝘁𝗶𝗼𝗻: If you have multiple stores (policies, product docs, web search), route the query to the best source and add filters (e.g., “last 90 days”).

𝗕𝘂𝗶𝗹𝗱𝗶𝗻𝗴 𝗯𝗹𝗼𝗰𝗸𝘀 (𝘄𝗶𝘁𝗵𝗼𝘂𝘁 𝘁𝗵𝗲 𝗵𝗲𝗮𝗱𝗮𝗰𝗵𝗲)
✅ 𝗟𝗮𝗻𝗴𝗖𝗵𝗮𝗶𝗻 (𝗰𝗵𝗮𝗶𝗻𝘀): Wire steps like “translate → retrieve → generate → parse” into a clear sequence you can swap and test.

✅𝗟𝗮𝗻𝗴𝗦𝗺𝗶𝘁𝗵 (𝗼𝗯𝘀𝗲𝗿𝘃𝗮𝗯𝗶𝗹𝗶𝘁𝘆): Trace every run, see timings and inputs/outputs, and debug failures—super handy once you go beyond demos.

𝗦𝘂𝗺𝗺𝗮𝗿𝘆 𝘆𝗼𝘂 𝗰𝗮𝗻 𝘁𝗮𝗸𝗲 𝘁𝗼 𝘄𝗼𝗿𝗸
✅Start simple: good chunking + a solid vector DB + a clear prompt template.
✅Measure what matters (accuracy on real tasks, not vibes).
✅Iterate: logs and traces will tell you where the bottleneck is.

Tags: 

#genai #rag 

 Referred Link - https://www.linkedin.com/posts/prem-natarajan-ai_%F0%9D%90%8F%F0%9D%90%AB%F0%9D%90%A8%F0%9D%90%A6%F0%9D%90%A9%F0%9D%90%AD%F0%9D%90%A2%F0%9D%90%A7%F0%9D%90%A0-%F0%9D%90%9A%F0%9D%90%AD%F0%9D%90%AD%F0%9D%90%9A%F0%9D%90%9C%F0%9D%90%A4%F0%9D%90%AC-%F0%9D%90%9A%F0%9D%90%AB%F0%9D%90%9E-activity-7377318581971165184-hL-R/

 


𝐏𝐫𝐨𝐦𝐩𝐭𝐢𝐧𝐠 𝐚𝐭𝐭𝐚𝐜𝐤𝐬 𝐚𝐫𝐞 𝐭𝐡𝐞 𝐧𝐞𝐰 𝐭𝐲𝐩𝐞 𝐨𝐟 𝐀𝐈 𝐫𝐢𝐬𝐤𝐬.
While LLMs are powerful, they are also vulnerable to clever manipulations that bypass safeguards, expose sensitive data, or distort outputs.

Understanding these attacks is critical - not just for researchers, but also for businesses deploying AI. Here’s a breakdown of the major types of prompting attacks and how they operate:

🔑 𝐓𝐲𝐩𝐞𝐬 𝐨𝐟 𝐏𝐫𝐨𝐦𝐩𝐭𝐢𝐧𝐠 𝐀𝐭𝐭𝐚𝐜𝐤𝐬

1. Jailbreaks (Safety Bypass)
Trick the model into ignoring built-in rules or safety policies to return disallowed content.

2. Prompt Injection
Hide malicious commands inside external content so the model unknowingly executes them.

3. Instruction Overriding / Role Abuse
Convince the model to adopt roles or personas that override its safety checks.

4. Chained / Recursive Prompting
Break big restrictions into small prompts executed step-by-step until rules are bypassed.

5. Resource / Command Injection
Exploit API/tool access by forcing repeated costly, unauthorized, or harmful operations.

6. Prompt Leakage / Chain-of-Trust Attacks
Trick models into exposing hidden system prompts, policies, or internal instructions.

7. Adversarial Examples (Input Perturbation)
Slight text tweaks (like punctuation changes) that confuse parsing and produce wrong outputs.

8. Trojan / Backdoor Triggers
Hidden phrases or patterns that trigger abnormal model behavior when encountered.

9. Social-Engineering Prompts
Persuasive prompts that manipulate models into generating deceptive or fraudulent outputs.

10. Data Exfiltration via LLMs
Coax models into leaking private or sensitive data from prior context or training.

11. Model Inversion / Membership Inference
Probe models to infer whether specific records were part of their training set.

12. Covert Channels / Steganographic Prompts
Hide malicious instructions in harmless-looking text or encoded patterns.

Prompting attacks show that AI security is not just about model training - it is about prompt design, monitoring, and safeguards.
The more structured and layered your defences, the harder it becomes for attackers to exploit these vulnerabilities.

Tags:  

#ArtificialIntelligence, #AI, #ChatGPT, #LLM 

 

Referred Link -  

https://www.linkedin.com/posts/aditya-hicounselor_ai-sql-nosql-activity-7378057053979844608-z-AX

 

𝗔𝘀 𝗮𝗽𝗽𝗹𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝗲𝘃𝗼𝗹𝘃𝗲 𝘁𝗼𝘄𝗮𝗿𝗱 𝗔𝗜, 𝘀𝗰𝗮𝗹𝗲, 𝗮𝗻𝗱 𝗿𝗲𝗮𝗹-𝘁𝗶𝗺𝗲 𝗱𝗲𝗰𝗶𝘀𝗶𝗼𝗻𝘀, 𝗱𝗮𝘁𝗮𝗯𝗮𝘀𝗲𝘀 𝗮𝗿𝗲 𝗻𝗼 𝗹𝗼𝗻𝗴𝗲𝗿 𝗼𝗻𝗲-𝘀𝗶𝘇𝗲-𝗳𝗶𝘁𝘀-𝗮𝗹𝗹.

It’s not just SQL vs NoSQL anymore. It’s about choosing the right database for the data, the workload, and the business outcome.

𝗟𝗲𝘁’𝘀 𝗯𝗿𝗲𝗮𝗸 𝗶𝘁 𝗱𝗼𝘄𝗻 👇

1. 𝗥𝗲𝗹𝗮𝘁𝗶𝗼𝗻𝗮𝗹 (SQL) Databases
Structured, reliable, and transaction-safe.
🔹 Banking | ERP | Order Management
Examples: MySQL | PostgreSQL | SQL Server

2. 𝗖𝗼𝗹𝘂𝗺𝗻𝗮𝗿 Databases
Built for analytics & fast aggregations.
🔹 Data Warehousing | BI | OLAP
Examples: Redshift | ClickHouse | HBase

3. 𝗧𝗶𝗺𝗲-𝗦𝗲𝗿𝗶𝗲𝘀 Databases
Optimized for metrics, events, and IoT data.
🔹 Monitoring | IoT | Real-time Analytics
Examples: InfluxDB | TimescaleDB | QuestDB

4. 𝗜𝗻-𝗠𝗲𝗺𝗼𝗿𝘆 Databases
Ultra-low latency & millisecond responses.
🔹 Fraud Detection | Real-time Apps | Caching
Examples: Redis | SAP HANA | Ignite

5. 𝗚𝗿𝗮𝗽𝗵 Databases
Focus on relationships & connections.
🔹 Social Networks | Recommendations | Knowledge Graphs
Examples: Neo4j | JanusGraph | Cosmos DB

6. 𝗗𝗼𝗰𝘂𝗺𝗲𝗻𝘁 Databases
Flexible schemas for semi-structured data.
🔹 CMS | User Profiles | Mobile Apps
Examples: MongoDB | Couchbase | Firestore

7. 𝗩𝗲𝗰𝘁𝗼𝗿 Databases
Powering AI & semantic search.
🔹 Generative AI | RAG | Similarity Search
Examples: Pinecone | Milvus | Weaviate

8. 𝗢𝗯𝗷𝗲𝗰𝘁-𝗢𝗿𝗶𝗲𝗻𝘁𝗲𝗱 Databases
Store data as objects aligned with code.
🔹 CAD/CAM | Complex Applications
Examples: db4o | ZODB

9. 𝗕𝗹𝗼𝗰𝗸𝗰𝗵𝗮𝗶𝗻 Databases
Immutable, secure, and decentralized.
🔹 Supply Chain | Provenance Tracking | Identity Verification
Examples: BigchainDB | CovenantSQL

Tags:
#SQL #NoSQL
 

Newer Posts
Older Posts

Search this Site

Connect with Me

Translate Articles

Total Posts

Total Pageviews


Contributors

My photo
Jayavel Chakravarthy Srinivasan
Professional: I'm a Software Techie, Specialized in Microsoft technologies. Worked in CMM Level 5 organizations like EPAM, KPMG, Bosch, Honeywell, ValueLabs, Capgemini and HCL. I have done freelancing. My interests are Software Development, Graphics design and Photography.
Certifications: I hold PMP, SAFe 6, CSPO, CSM, Six Sigma Green Belt, Microsoft and CCNA Certifications.
Academic: All my schooling life was spent in Coimbatore and I have good friends for life. I completed my post graduate in computers(MCA). Plus a lot of self learning, inspirations and perspiration are the ingredients of the person what i am now.
Personal Life: I am a simple person and proud son of Coimbatore. I studied and grew up there. I lost my father at young age. My mom and wife are proud home-makers and greatest cook on earth. My kiddo in her junior school.
Finally: I am a film buff and like to travel a lot. I visited 3 countries - United States of America, Norway and United Kingdom. I believe in honesty after learning a lot of lessons the hard way around. I love to read books & articles, Definitely not journals. :)
View my complete profile

Certifications

Certifications

My Favorite Links

  • Saran & Akshu Links
  • Saran Kitchen Hut
  • World of Akshu
  • Ashok Raja Blog

Subscribe To

Posts
Atom
Posts

Contact Form

Name

Email *

Message *

Blog Archive

  • ▼  2025 (58)
    • ▼  October (3)
      • How RAG Works in GenAI
      • Prompting Attack Types
      • Types of Databases
    • ►  August (1)
    • ►  July (6)
    • ►  June (7)
    • ►  May (26)
    • ►  April (1)
    • ►  March (3)
    • ►  February (1)
    • ►  January (10)
  • ►  2024 (134)
    • ►  December (3)
    • ►  November (8)
    • ►  October (11)
    • ►  September (2)
    • ►  August (1)
    • ►  July (39)
    • ►  June (8)
    • ►  May (4)
    • ►  April (9)
    • ►  March (6)
    • ►  February (33)
    • ►  January (10)
  • ►  2023 (16)
    • ►  December (12)
    • ►  August (2)
    • ►  March (1)
    • ►  January (1)
  • ►  2022 (14)
    • ►  December (1)
    • ►  August (6)
    • ►  July (3)
    • ►  June (2)
    • ►  February (1)
    • ►  January (1)
  • ►  2021 (16)
    • ►  December (1)
    • ►  November (2)
    • ►  October (2)
    • ►  August (1)
    • ►  July (2)
    • ►  June (2)
    • ►  May (2)
    • ►  March (2)
    • ►  February (1)
    • ►  January (1)
  • ►  2020 (36)
    • ►  December (1)
    • ►  November (15)
    • ►  October (2)
    • ►  September (1)
    • ►  July (1)
    • ►  June (2)
    • ►  May (4)
    • ►  March (2)
    • ►  February (6)
    • ►  January (2)
  • ►  2019 (14)
    • ►  December (3)
    • ►  November (1)
    • ►  September (2)
    • ►  August (1)
    • ►  June (1)
    • ►  May (3)
    • ►  March (2)
    • ►  January (1)
  • ►  2018 (61)
    • ►  November (3)
    • ►  October (4)
    • ►  September (4)
    • ►  August (5)
    • ►  July (4)
    • ►  June (4)
    • ►  May (7)
    • ►  April (7)
    • ►  March (5)
    • ►  February (1)
    • ►  January (17)
  • ►  2017 (55)
    • ►  December (1)
    • ►  November (7)
    • ►  October (7)
    • ►  September (8)
    • ►  July (4)
    • ►  June (7)
    • ►  May (4)
    • ►  April (4)
    • ►  March (1)
    • ►  February (2)
    • ►  January (10)
  • ►  2016 (45)
    • ►  December (1)
    • ►  November (5)
    • ►  October (2)
    • ►  September (7)
    • ►  August (3)
    • ►  July (3)
    • ►  June (1)
    • ►  May (3)
    • ►  April (5)
    • ►  March (3)
    • ►  February (3)
    • ►  January (9)
  • ►  2015 (88)
    • ►  December (5)
    • ►  November (2)
    • ►  October (6)
    • ►  September (6)
    • ►  August (3)
    • ►  July (6)
    • ►  June (7)
    • ►  May (12)
    • ►  April (6)
    • ►  March (11)
    • ►  February (10)
    • ►  January (14)
  • ►  2014 (159)
    • ►  December (16)
    • ►  November (13)
    • ►  October (42)
    • ►  September (12)
    • ►  August (19)
    • ►  July (3)
    • ►  June (17)
    • ►  May (10)
    • ►  April (12)
    • ►  March (7)
    • ►  February (4)
    • ►  January (4)
  • ►  2013 (192)
    • ►  December (7)
    • ►  November (2)
    • ►  October (3)
    • ►  September (10)
    • ►  August (25)
    • ►  July (17)
    • ►  June (22)
    • ►  May (22)
    • ►  April (24)
    • ►  March (17)
    • ►  February (22)
    • ►  January (21)
  • ►  2012 (204)
    • ►  December (21)
    • ►  November (35)
    • ►  October (47)
    • ►  September (27)
    • ►  August (6)
    • ►  July (21)
    • ►  June (16)
    • ►  May (7)
    • ►  April (9)
    • ►  March (4)
    • ►  February (3)
    • ►  January (8)
  • ►  2011 (70)
    • ►  December (8)
    • ►  November (5)
    • ►  October (3)
    • ►  September (2)
    • ►  August (7)
    • ►  July (3)
    • ►  June (30)
    • ►  May (3)
    • ►  April (3)
    • ►  March (1)
    • ►  February (3)
    • ►  January (2)
  • ►  2010 (30)
    • ►  December (1)
    • ►  September (4)
    • ►  August (1)
    • ►  July (1)
    • ►  June (1)
    • ►  May (4)
    • ►  April (6)
    • ►  March (5)
    • ►  February (2)
    • ►  January (5)
  • ►  2009 (40)
    • ►  December (4)
    • ►  November (6)
    • ►  October (4)
    • ►  September (5)
    • ►  August (4)
    • ►  July (3)
    • ►  June (4)
    • ►  May (8)
    • ►  March (1)
    • ►  February (1)
  • ►  2008 (6)
    • ►  December (1)
    • ►  September (1)
    • ►  May (1)
    • ►  April (2)
    • ►  February (1)
  • ►  2007 (7)
    • ►  December (1)
    • ►  November (2)
    • ►  October (1)
    • ►  July (1)
    • ►  May (2)

Recent Posts

Followers

Report Abuse

FOLLOW ME @INSTAGRAM

Popular Posts

  • Stay Wow - Health Tips from Sapna Vyas Patel
    Referred URL https://www.facebook.com/sapnavyaspatel WATCH WEIGHT LOSS VIDEO: http://www.youtube.com/ watch?v=S_dlkjwVItA ...
  • Calorie Count chart For food and drinks
    Referred URL http://deepthidigvijay.blogspot.co.uk/p/health-diet-calorie-charts.html http://www.nidokidos.org/threads/37834-Food-Calorie-...
  • SharePoint 2010 Interview Questions and Answers
    Referred URL http://www.enjoysharepoint.com/Articles/Details/sharepoint-2010-interview-questions-and-answers-148.aspx 1.What is SharePoint...
  • 150 Best Windows Applications Of Year 2010
    Referred URL : http://www.addictivetips.com/windows-tips/150-best-windows-applications-of-year-2010-editors-pick/?utm_source=feedburner...
  • Web Developer Checklist by Mads Kristensen
    Referred Link -  http://webdevchecklist.com/ Web Developer Checklist Get the extension  Chrome  |  Firefox  |  Edge Menu Bes...
  • WCF and REST Interview Questions
    What is WPF? The Windows Presentation Foundation (WPF) is a next generation graphics platform that is part of...
  • Remove double tap to unlock feature on samsung galaxy core2
    Double tap to unlock is a feature of Talkback, so if your will disable Talkback, double tap to unlock will also be disabled. To disable doub...
  • Difference Between Content Editor and Script Editor webpart
    Referred Link -  http://jeffas.com/content-editor-vs-script-editor-webpart/ Content editor web part is a place holder for creating rich ...
  • SPFolder related operations in SharePoint
      1) Get SPListItem(s) of a particular SPFolder SPList splist; SPFolder spfolder; //Get the required folder instance SPQuery spquery = new ...

Comments

Created with by BeautyTemplates | Distributed by blogger templates