Navigating the complexities of data pipelines across these platforms unveils a spectrum of unique functionalities and innovations. Each platform excels in key phases: ingestion, data lakes, processing, data warehousing, and presentation.
Here’s a comprehensive guide to get you started:
๐๐ป๐ด๐ฒ๐๐๐ถ๐ผ๐ป
๐น Azure: Azure IoT Hub, Azure Function, Event Hub, Data Factory
๐น AWS: AWS IoT, Lambda Function, Kinesis Streams/Firehose, Data Pipeline
๐น GCP: Cloud IoT, Cloud Function, PubSub, Dataflow
๐๐ฎ๐๐ฎ ๐๐ฎ๐ธ๐ฒ
๐น Azure: Azure Data Lake Store
๐น AWS: Glacier, S3 Lake Formation
๐น GCP: Cloud Storage, BigQuery Omni, Preparation & Computation
๐น Azure: Databricks, Data Explorer, Azure ML
๐ฆ๐๐ฟ๐ฒ๐ฎ๐บ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐
๐น AWS: EMR, Glue ETL, Sage Maker Kinesis Analytics
๐น GCP: DataPrep, DataProc, DataFlow, AutoML, Dataprep by Trifacta
๐๐ฎ๐๐ฎ ๐ช๐ฎ๐ฟ๐ฒ๐ต๐ผ๐๐๐ถ๐ป๐ด
๐น Azure: Cosmos DB, Azure SQL, Azure Redis Cache, Data Catalog, Event Hub Synapse Analytics
๐น AWS: RedShift, RDS, Elastic Search, DynamoDB, Glue Catalog, Kinesis Streams
๐น GCP: Cloud Datastore, Bigtable, Cloud SQL, BigQuery, Memory Store, Data Catalog, PubSub
๐ฃ๐ฟ๐ฒ๐๐ฒ๐ป๐๐ฎ๐๐ถ๐ผ๐ป
๐น Azure: Azure ML Designer/Studio (EDA), Power BI, Azure Function
๐น AWS: Athena (EDA), QuickSight, Lambda Function
๐น GCP: Colab (EDA), Datalab Data Studio, Cloud Function
Each platform tailors its approach to accommodate the entire lifecycle of data, from initial collection to insightful visualizations that drive business strategies.
Whether it’s the comprehensive analytics solutions of Azure, the scalable and customizable nature of AWS, or the real-time, user-friendly interfaces of GCP, the choice depends on your specific needs, budget, and tech stack.
Software techie by profession, roaming around the world.. A proud Indian, brought up in Coimbatore, Tamilnadu, INDIA. Pointing towards share of knowledge... :)
No comments:
Post a Comment