Saturday, August 13, 2022

Big Data Pipelines on AWS, Azure & Google Cloud


The article explains the structure of general #Big #Data pipelines in a very clear and easy to understand way. Recommended to any #Data #Engineer - working in a cloud environment or not.


Navigating the complexities of data pipelines across these platforms unveils a spectrum of unique functionalities and innovations. Each platform excels in key phases: ingestion, data lakes, processing, data warehousing, and presentation.

Here’s a comprehensive guide to get you started:

๐—œ๐—ป๐—ด๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป
๐Ÿ”น Azure: Azure IoT Hub, Azure Function, Event Hub, Data Factory
๐Ÿ”น AWS: AWS IoT, Lambda Function, Kinesis Streams/Firehose, Data Pipeline
๐Ÿ”น GCP: Cloud IoT, Cloud Function, PubSub, Dataflow

๐——๐—ฎ๐˜๐—ฎ ๐—Ÿ๐—ฎ๐—ธ๐—ฒ
๐Ÿ”น Azure: Azure Data Lake Store
๐Ÿ”น AWS: Glacier, S3 Lake Formation
๐Ÿ”น GCP: Cloud Storage, BigQuery Omni, Preparation & Computation
๐Ÿ”น Azure: Databricks, Data Explorer, Azure ML

๐—ฆ๐˜๐—ฟ๐—ฒ๐—ฎ๐—บ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€
๐Ÿ”น AWS: EMR, Glue ETL, Sage Maker Kinesis Analytics
๐Ÿ”น GCP: DataPrep, DataProc, DataFlow, AutoML, Dataprep by Trifacta

๐——๐—ฎ๐˜๐—ฎ ๐—ช๐—ฎ๐—ฟ๐—ฒ๐—ต๐—ผ๐˜‚๐˜€๐—ถ๐—ป๐—ด
๐Ÿ”น Azure: Cosmos DB, Azure SQL, Azure Redis Cache, Data Catalog, Event Hub Synapse Analytics
๐Ÿ”น AWS: RedShift, RDS, Elastic Search, DynamoDB, Glue Catalog, Kinesis Streams
๐Ÿ”น GCP: Cloud Datastore, Bigtable, Cloud SQL, BigQuery, Memory Store, Data Catalog, PubSub

๐—ฃ๐—ฟ๐—ฒ๐˜€๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป
๐Ÿ”น Azure: Azure ML Designer/Studio (EDA), Power BI, Azure Function
๐Ÿ”น AWS: Athena (EDA), QuickSight, Lambda Function
๐Ÿ”น GCP: Colab (EDA), Datalab Data Studio, Cloud Function

Each platform tailors its approach to accommodate the entire lifecycle of data, from initial collection to insightful visualizations that drive business strategies.

Whether it’s the comprehensive analytics solutions of Azure, the scalable and customizable nature of AWS, or the real-time, user-friendly interfaces of GCP, the choice depends on your specific needs, budget, and tech stack.

No comments:

Post a Comment